
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

Admin: Liam O’Connor-Davies

COMP3141 17s1

Admin & Motivation & Some History

Admin

• Course website is the main source of information for this course:

• www.cse.unsw.edu.au/~cs3141

• Piazza as course forum

• you should receive invitation shortly

• Consultation time

• Monday after the lecture - please send an email

• otherwise, by appointment

http://www.cse.unsw.edu.au/~cs3141

Lectures

• Monday lectures will start at 9:15 and we skip the break

• Lectures will be recorded via Echo

• We’re using ‘OneNote’ to share class whiteboard content

• link and invitation coming soon

Assessment

• No tutes, but regular exercises and quizzes

• to practice and deepen understanding of lecture content

• 2 Assignments

• Final exam

• harmonic mean between class mark and exam

• need to pass exam (40%) to pass the course

Motivation

What this course is all about?

• Mobile phones

• Social networks

• Cars & public transport

• Multimedia devices

• Medical systems

• Crypto currency

• Obviously, on computers at home and at work

Software affects our lives everywhere

Software is often mission critical.

Photo by Prosper973 - http://flic.kr/p/6pECyk

Photo by brykmantra - http://flic.kr/p/7MrFA

Photo by banger1977 - http://flic.kr/p/4nTFPQ

 ~US$500 million.

 multiple fatalities

> 20 Million cards

affected

http://flic.kr/p/6pECyk
http://flic.kr/p/7MrFA
http://flic.kr/p/4nTFPQ

Modern cars are computer
networks on wheels

So, why is software still so unreliable?

Software must be of high quality:
correct, safe & secure

Software must be developed
with low effort: cheap & quickly

Software defects affect many
activities

increasingly used in safety and
security critical applications

Financial success often depends on software
success

products include increasing amounts of software
shouldn't get more expensive due to
software

releases shouldn't be delayed due to software

Sometimes we can sacrifice one for the other

• Computer games: development effort
is key

‣ Correctness and safety are
secondary

‣ Nobody notices a few pixel
with the wrong colour

‣ or if the game physics isn't
quite accurate….

Sometimes we can sacrifice one for the other

• Flight management system
(correctness is key)

‣ Safety and security is an
overriding concern

‣ Defects are very costly
and may harm human
life

New York Times:

Usually, we need a balance

• Consider testing for a mass market product

‣ If we test for a very long time with many testers

- the product will be expensive and we ship too late, but with few
defects

‣ If we do very little testing

- the product will be cheaper and ship early, but be riddled with bugs

• In practice, you want to ship when the remaining bugs are unlikely to affect
users (sales?) very much

Implications

1. We need to be able to trade quality for reduced effort

‣ To be broadly applicable, an approach to software design and
implementation must support this trade off

2. We ideally want to increase quality, while reducing effort

‣ We seek novel approaches that solve both problems at once

Produce better software with less effort

• Better software

‣ Software that has fewer defects (including security defects)

‣ Software that is more usable — we won't talk about usability in this course

• Less effort

‣ Shorter development time

‣ Fewer programmers

‣ Less-specialised programmers

The core theme of this course

How can mathematical tools & concepts help to produce better software with
less effort?

Why are mathematical tools interesting?

• Mature engineering disciplines are based on mathematical foundations

‣ We rarely guess the input current to a semiconductor

‣ Would you build a bridge and then test whether it can hold its load?

• They enable a qualitative change in software development

‣ We want to increase quality, while reducing effort

‣ High-assurance software requires proof

What mathematical tools?

• Tools to reason about specifications and programs

‣ Theorem provers & proof assistants

‣ Static analysis tools & type checkers

• Tools to transform and refine programs

‣ Meta programming & generative programming

‣ Rewriting tools

• Advanced programming languages and environments

Calculus

What is the basis of these tools?

∀x.P(x)
Mathematical logic

Discrete mathematics

The basis for reasoning
about programs

Discrete mathematics

• Study of structures that are fundamentally discrete rather than continuous

• In a discrete space, individual points are isolated from each other — consider,
natural numbers versus real numbers

A
B

C

1

2

4
3

5

f

functions in computing
Photo by Un ragazzo chiamato Bi - http://flic.kr/p/4NFrtx

state space of a computer

http://en.wikipedia.org/wiki/Discrete_space
http://en.wikipedia.org/wiki/Continuous_function

Mathematical logic

• Foundation of reasoning about computation, languages, and programs

‣ Mathematical basis for software design and implementation

• Originally arose out of the study of the foundations of mathematics

‣ On what ultimate basis can mathematical statements be called true?

‣ The foundations of mathematics were heavily disputed in the early 20th
century - mainly intuitionists vs formalist

A little bit of history

• 1900: Hilbert’s Problems

‣ (Initially) ten open problems of mathematics

‣ 2nd problem:

Prove that the axioms of arithmetic are consistent

• 1920s: Hilbert's program

‣ Base all of mathematics on a finite, complete set of axioms

‣ Show that they are complete, consistent and system is decidable

• 1928: Hilbert’s Entscheidungsproblem (decision problem)

‣ given a statement in first order logic, is the statement provable?

0∊ℕ
x∊ℕ ⇒ s(x) ∊ℕ
x∊ℕ ⇒ s(x) ≠ 0
s(x) = s(y) ⇒ x = y
0 ∊ 𝕏, (x ∊ ℕ ⇒(x ∊ 𝕏 ⇒ s(x) ∊ 𝕏)) ⇒ ℕ ⊆ 𝕏

https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Consistency

A little bit of history

• 1931: Gödel's incompleteness theorems

‣ Consistent, computable axiom set, covering arithmetic,
can never be complete

‣ Such a system can't even prove it's own consistency

• Adapted form of Hilbert's program

‣ Instead of formalising all of mathematics, formalise the important parts

• There are many consistent and complete logics

‣ Gödel showed that first-order logic is complete

• 1928: Hilbert's Entscheidungsproblem ("decision problem")

‣ Is there an algorithm that, given a mathematical statement (in a formal
language), will tell us whether the statement is true or false?

• Church (1936) & Turing's (1937) Church-Turing Theorem

‣ Showed that such an algorithm is impossible

• Church-Turing Thesis

‣ Recursive functions, Turing machines & lambda calculus are equivalent

• Idea: assume we have a total function

Halting Problem

f (i) = if stops (i ,i)
 then loop forever
 else 1

stops (p, i): returns True if program p applied to
input i stops, false otherwise

f (f) ?

Lambda calculus

• Minimal calculus that can express all computable functions

‣ Only variables, function abstraction, and function application

• The basis for many theorem provers

• The foundation of all functional programming languages

‣ Extend the lambda calculus with explicit data structures

‣ Add syntactic sugar to make it more convenient

Background

• Very simple, but Turing-complete (Church-Turing thesis)

‣ Pure lambda calculus has three constructs and two rewrite rules

‣ It's compositional (i.e., it's highly modular)

• Today there are many different flavours

‣ With and without types, with many extensions, and so on

• Lambda abstractions in C#, C++1x, Objective-C (as blocks), Swift & FP
languages

Syntax

• The pure λ-calculus has three syntactic forms

‣ Variables:

‣ Lambda abstraction:

‣ Function application:

x, y, z, ...

�x.M

MN

Reduction rules

• Alpha conversion:

‣ We may change the name of any bound variable

‣ For example, we may convert to

‣ A bound variable is one named in an enclosing lambda abstraction

‣ For example, here is bound, but is free:

�x.x �y.y

x y �x.xy

Reduction rules

• Beta reduction:

‣ We can reduce a term of the form to

‣ Where means to replace any in by

‣ The latter process is called substitution

‣ For example, we have

(�x.M)N

x NM

(�x.�y.x)(�z.z)vw �! (�y.�z.z)vw �! (�z.z)w �! w

(�x.x)y �! y

M [N/x]

M [N/x]

execution of a lambda term

Church Encoding

• How can simple data types and operations on them be encoded in the
lambda calculus

• boolean values?

• natural numbers?

Course contents

• Logical program properties

‣ Basic logic & formal properties

‣ Property-based testing

• Types help to design programs

‣ Program properties as types

‣ Types guide the design

‣ Encapsulating properties

• Types help to implement programs

‣ Types imply programs

‣ Types control effects

‣ Types prevent defects

• Effect control helps with parallelism

‣ Effects interfere with
concurrency & parallelism

Haskell

• A practical, strongly-typed functional programming language

‣ Widely used in research, industry & education

‣ Mature, highly optimising compiler with interactive environment

‣ Over thousands of open-source libraries and tools

• Named after the logician Haskell B. Curry

http://haskell.org/

http://haskell.org

Why Haskell?

• Functional languages are based on the lambda calculus

‣ Semantics of programs is fairly precisely defined

‣ This simplifies formal reasoning about these programs

• Functional languages can dramatically increase productivity

‣ Factor of four has been cited for Erlang versus C++

• Haskell has a very sophisticated type system

• Haskell has controlled effects

