Software System Design and Implementation

Admin & Motivation & Some History

Gabriele Keller

Admin: Liam O’Connor-Davies

The University of New South Wales
School of Computer Science and Engineering
Sydney, Australia

COMP3141 17s1

Admin

 Course website is the main source of information for this course:

¢ WWW.cse.unsw.edu.au/~cs3141

« Plazza as course forum

 you should receive invitation shortly

« Consultation time

- Monday after the lecture - please send an email

 otherwise, by appointment

http://www.cse.unsw.edu.au/~cs3141

| ectures

* Monday lectures will start at 9:16 and we skip the break

* Lectures will be recorded via Echo

- We’re using ‘OneNote’ to share class whiteboard content

* link and invitation coming soon

Assessment

* No tutes, but regular exercises and quizzes

» to practice and deepen understanding of lecture content

« 2 Assignments

* Final exam

 harmonic mean between class mark and exam

« need to pass exam (40%) to pass the course

Motivation

What this course is all about?

Software affects our lives everywhere

« Mobile phones

« Social networks

 Cars & public transport

 Multimedia devices

« Medical systems

« Crypto currency

« Obviously, on computers at home and at work

NBP M HI 148
1$P02 L0 88
3P02L0 85

Photo by Prosper973 - http://flic.kr/p/6pECyk Photo by banger1977 - http://flic.kr/p/4AnTEP

Software is often mission critical.

http://flic.kr/p/6pECyk
http://flic.kr/p/7MrFA
http://flic.kr/p/4nTFPQ

CAN CLASS B CANCLASSC = MOST-BUS PRIVATE-BUS S
(1) SAMSRB Fahrer y Parkirericsystam (FT5) @ Enkironichis Zineschion (E25) Aodcgatewsy @ Sizsmoegocdl Favr :-‘g Mubicorturehns Nnten ochis
7) SAM/SRE Batahier {) Assandruckkomrel s (ADK) () KemLrminmant (4@ Hoadnt (6) Sitzswvergerit Bellarver §3 weyies Go Hecumooul
{3) SANSRE Hick 1 G Powarutischo Shemawid it (PSE] @0 Mantebomedul 53 Steverparit Spacradenung (7) Stuzmeusegenin Hinten nks 60 Koytass Go Innenraummodul
(4) SAMEHE Mok 2 @9 Hocxdeckearwsc emssung’<linung C-J' Zeswnlen Gatewary 1) TV Tunss MOST (6) Shzstoucegart Himon oo 5 Keryems Go Tir menzan s
(es_) Stzsieucegondt Fahoer @) Zanmios Gatowey @ Elekiroresches WANNebelmodd) Souncverstakes TV-Tuser CAN Keytess Go T nrten rechs
(&) Blastenmrgacit Beslatiooe 69 Aimag-SG (Armada) @7) Lentiodenirg (SLF) B3 Narvgasonsrechner (& Dachinstrament Fondolidachime Inks
@ Skzstaumgondl himon b Multuncionesiacengert (MSS) @ Orstronic (DTRY 9 Kommunkatonapatiionm (C21) @5 Sensotronks Brakw Systom (FEG) Fondiasche rechie
(¥) Grzsmuprponit Nmon roohis Barunelz SlowMgenal &3 Leuachimetarceguiorung (47 Sensoucriz Beake Systom (ASG1) Komeeunkaionsplations Fod (CF2)
2) Torsteunogerdl vorno Fahversslo ‘Wandier Lonsracheiung @ et g akroric (W) @l Sersotronic Soace System (ASG 2| B Sarround Aanpiiler
(1_@ Torsteasogorit vome Befabooosste Standheining {f:) Sencotrona Beake Sysem (FEG) 5 Mubikor tbudohna vorne B @ Aacko Viooo Conoler
(1) Tormeaegerst Nnten Fahrersohe @ Tovzuziehung hirsan Fahrarsaite £8) Evi-onic w Qutrabo-Stavorung E8) Mulikor turobem VoG tech CD-Wecier
(12 Tirmsoergerdt Neten Besahresaio &7 Tuszuziehung himen Baltshrersee £ Murrarnarontng inton ks 70 VO Spwder
(13 Stevorgerst Trearward Sencar Kogfroenr Wres
(19 Dachoedienenkalt (73 Sencer Kopihdear rechis
Dachknoten Mme (DA
VoediessBaclan-Feld (VEF)

e Bactnn-Fale (HAT)
(18 Bonronisuhes Zundschiass (E2S)
(18 Kombiwatr e
Marokohimocl
1) Fromiimatsiorung
@ Feackimatisioning
@4 mxsogamway

KON.VERKABELUNG

OCIAC Wander Sigktrouansoarenies Pancemadach
39 DOAC Wandiar Elekctranasareate Trecrmand
Steuergaril Mikzolonaerny
73 Gogeraprechariage MAYBACH

(79 DCAAT Wandler Loushtstrefen Dach
(7% DC/AG Wandior Flekticluminazsne Schisbahmmel
(78 Spannungawandier DOOT Soksdact

2 aller Steuergerate: 76

Modern cars are computer
networks on wheels

S0, why Is software still so unreliable”?

Software must be of high quality: Software must be developed
correct, safe & secure with low effort: cheap & quickly

products include increasing amounts of software

shouldn't get more expensive due to
software

releases shouldn't be delayed due to software

Software defects affect many
activities

increasingly used in safety and
security critical applications

Financial success often depends on software
success

Sometimes we can sacrifice one for the other

- Computer games: development effort
Is key

» Correctness and safety are
secondary

» Nobody notices a few pixel
with the wrong colour

» or if the game physics isn't
quite accurate....

Sometimes we can sacrifice one for the other

. New York Times:
- Flight management system o TOTE S

(correctness is key) Airline Blames Bad Software in San Francisco Crash

By MAL HEW L. WALDU NMARUA S, N4

» Safety and security is an
overriding concern

» Defects are very costly
and may harm human
life

Usually, we need a balance

- Consider testing for a mass market product
» If we test for a very long time with many testers

- the product will be expensive and we ship too late, but with few
defects

» If we do very little testing
- the product will be cheaper and ship early, but be riddled with bugs

* In practice, you want to ship when the remaining bugs are unlikely to affect
users (sales?) very much

Implications

1. We need to be able to trade quality for reduced effort

» To be broadly applicable, an approach to software design and
iImplementation must support this trade off

2. We ideally want to increase quality, while reducing effort

» We seek novel approaches that solve both problems at once

Produce better software with less effort

- Better software

» Software that has fewer defects (including security defects)

» Software that is more usable — we won't talk about usability in this course

« Less effort

» Shorter development time

» Fewer programmers

» Less-specialised programmers

he core theme of this course

How can mathematical tools & concepts help to produce better software with
less effort?

Why are mathematical tools interesting?

- Mature engineering disciplines are based on mathematical foundations

» We rarely guess the input current to a semiconductor

» Would you build a bridge and then test whether it can hold its load?
- They enable a qualitative change in software development

» We want to increase quality, while reducing effort

» High-assurance software requires proof

What mathematical tools?

 Tools to reason about specifications and programs
» Theorem provers & proof assistants
» Static analysis tools & type checkers
» Tools to transform and refine programs
» Meta programming & generative programming
» Rewriting tools

- Advanced programming languages and environments

What is the basis=oftesesronao———
The basis for reasoning

about programs x

//7

Vx.P(x)

Mathematical logic

Discrete mathematics

Discrete mathematics

 Study of structures that are fundamentally discrete rather than continuous

* In a discrete space, individual points are isolated from each other — consider,
natural numbers versus real numbers

1
f
A »> 2
B —
| 4>
c—
5

functions in computing

http://en.wikipedia.org/wiki/Discrete_space
http://en.wikipedia.org/wiki/Continuous_function

Mathematical logic

- Foundation of reasoning about computation, languages, and programs

» Mathematical basis for software design and implementation

- Originally arose out of the study of the foundations of mathematics

» On what ultimate basis can mathematical statements be called true?

» The foundations of mathematics were heavily disputed in the early 20th
century - mainly intuitionists vs formalist

A little bit of history

* 1900: Hilbert’s Problems

» (Initially) ten open problems of mathematics

» 2nd problem:

Prove that the axioms of arithmetic are consistent

« 1920s: Hilbert's program

» Base all of mathematics on a finite,

» Show that they are complete, cong|

« 1928: Hilbert’s Entscheidungsproblem (deg

OeN
XeN = s(x) eN

XeN = s(x) z 0
s(x) =sly) = x=y
OeX, XeN=XeX=58)eX)=N CcX

> given a statement in first order logic, is the statement provable?

https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Consistency

A little bit of history

« 1931: Godel's incompleteness theorems

» Consistent, computable axiom set, covering arithmetic,
can never be complete

» Such a system can't even prove it's own consistency

- Adapted form of Hilbert's program

» Instead of formalising all of mathematics, formalise the important parts

* There are many consistent and complete logics

» Godel showed that first-order logic is complete

- 1928: Hilbert's Entscheidungsproblem ("decision problem")

» |s there an algorithm that, given a mathematical statement (in a formal
language), will tell us whether the statement is true or false?

« Church (1936) & Turing's (1937) Church-Turing Theorem
» Showed that such an algorithm is impossible

» Church-Turing Thesis

» Recursive functions, Turing machines &(lambda calculus)are equivalent

-wvmn\
[el |
(&) THE UNIVERSITY OF NEW SOUTH WALES

YYYYYY e AUSTRALIA

Halting Problem

* |dea: assume we have a total function

stops (p, 1): returns True 1f program p applied to
1nput 1 stops, false otherwise

f (1) = 1f stops (1 ,1)
then loop forever
else 1

f (f) 7

5 U SW
THE UNIVEI OF NEW SOUTH WALES

RSITY

QP
YYYYYY e AUSTRALIA

| ambda calculus

- Minimal calculus that can express all computable functions

» Only variables, function abstraction, and function application
* The basis for many theorem provers
- The foundation of all functional programming languages

» Extend the lambda calculus with explicit data structures

» Add syntactic sugar to make it more convenient

BSackground

- Very simple, but Turing-complete (Church-Turing thesis)
» Pure lambda calculus has three constructs and two rewrite rules
» It's compositional (i.e., it's highly modular)

- Today there are many different flavours
» With and without types, with many extensions, and so on

- Lambda abstractions in C#, C++1x, Objective-C (as blocks), Swift & FP
languages

Syntax

« The pure A-calculus has three syntactic forms
» Variables: , vy, z, ...
» Lambda abstraction: Ax. M

» Function application: M N

Reduction rules

 Alpha conversion:
» We may change the name of any bound variable
» For example, we may convert AZ.Z to)\y.y
» A bound variable is one named in an enclosing lambda abstraction

» For example, here X is bound, but Y is free:)\x.xy

Reduction rules

- Beta reduction:
» We can reduce a term of the form (Ax.M)N to M [N/ x]
» Where M |IN /x| means to replace any Z in M by N
» The latter process is called substitution

» For example, we have

execution of a lambda term
()\ZE.CIZ‘)y — Y

Az y.x)(Az.2)vw — (Ay z.2)vw — (Az.2)w — w

THE UNIVE OF NEW SOUTH WALES

-
Q\—J: RSITY

YYYYYY e AUSTRALIA

Church Encoding

« How can simple data types and operations on them be encoded in the
lambda calculus

* boolean values?

* natural numbers?

Course contents

 Logical program properties

» Basic logic & formal properties

» Property-based testing

- Types help to design programs

» Program properties as types

» Types guide the design

» Encapsulating properties

- Types help to implement programs

» Types imply programs

» Types control effects

» Types prevent defects

- Effect control helps with parallelism

» Effects interfere with
concurrency & parallelism

THE UNIVERSITY OF NEW SOUTH WALES

YYYYYY e AUSTRALIA

Haskell

* A practical, strongly-typed functional programming language
» Widely used in research, industry & education
» Mature, highly optimising compiler with interactive environment
» Over thousands of open-source libraries and tools

- Named after the logician Haskell B. Curry

http://haskell.orqg/

http://haskell.org

Why Haskell?

Functional languages are based on the lambda calculus

» Semantics of programs is fairly precisely defined

» This simplifies formal reasoning about these programs

Functional languages can dramatically increase productivity

» Factor of four has been cited for Erlang versus C++

Haskell has a very sophisticated type system

Haskell has controlled effects

